Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. M. Govind, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$
K. Ravikumar, ${ }^{\text {b }}$ A. R. Suresh

Babu c and R. Raghunathan ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and
${ }^{\mathrm{c}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
H -atom completeness 93%
R factor $=0.059$
$w R$ factor $=0.174$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2'-(4-Bromobenzoyl)acenaphthene-1-spiro-3'-pyrrolizidine- 1^{\prime}-spiro- $3^{\prime \prime}$-indole-2,2" $\mathbf{1 H}^{\prime \prime} 3^{\prime \prime} H$)dione monohydrate

The structure of the title compound, $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, and the molecular packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Oxindole derivatives are found to be potent aldose reductase inhibitors (ARIs), which help to treat and prevent diabetic complications arising from elevated levels of sorbitol (Rajeswaran et al., 1999). Indole and its derivatives represent one of the most active classes of compounds, possessing a wide spectrum of biological activity (Hiremath et al., 1988). In view of these facts, and in continuation of our work on spiro pyrrolizidine derivatives, the X-ray analysis of the title compound, (I), has been undertaken and the results are presented here.

(I)

Fig. 1 shows a displacement ellipsoid diagram of the asymmetric unit of (I), with the atomic numbering scheme. Selected geometric parameters are given in Table 1.

The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in the pyrrolizidine moiety are slightly longer than normal. A similar effect was observed in related structures (Seshadri et al., 2003; Abdul Ajees et al., 2002). This may be due to steric effects caused by the bulky substituents on the pyrrolizidine moiety. The sum of the angles at atom N 1 of the pyrrolizidine ring system (329.5°) is in accordance with $s p^{3}$ hybridization (Beddoes et al., 1986).

The ($\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 5$) ring adopts an envelope conformation, with puckering parameters (Cremer \& Pople, 1975) $q_{2}=$ $0.321(3) \AA$ and $\varphi=70.3(6)^{\circ}$; the smallest displacement asymmetry parameter (Nardelli, 1983) is $\Delta_{S}(\mathrm{~N} 1)=0.008(2)$. The keto atom O37 lies 0.064 (3) \AA from the acenaphthene plane.

The keto atom O36 is 0.231 (3) \AA out of the plane through $\mathrm{C} 3 / \mathrm{C} 14 / \mathrm{C} 15 / \mathrm{C} 20$, with the $\mathrm{C} 14=\mathrm{O} 36$ bond orientation defined by torsion angles $\mathrm{O} 36-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20=$ $-151.9(3)^{\circ}$ and $\mathrm{O} 36-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16=26.1(5)^{\circ}$. Atom O36

Received 27 February 2004
Accepted 8 March 2004 Online 24 March 2004

Figure 1
A view of (I), with displacement ellipsoids at the 50% probability level.
is an acceptor of an intermolecular interaction from C26H26.

The geometry of the acenaphthene moiety in (I) compares well with that reported for other compounds (Edwards et al., 1980; Suzuki et al., 2003). The five-membered N1/C5/C34/C33/ C 32 ring of the pyrrolizidine moiety adopts a twist conformation, with puckering parameters $q_{2}=0.360$ (3) \AA and $\varphi=$ $-167.8(6)^{\circ}$; the displacement asymmetry parameter $\Delta_{2}(\mathrm{C} 34)$ is 0.022 (2). The $\mathrm{C} 4 / \mathrm{C} 6 / \mathrm{N} 7 / \mathrm{C} 8 / \mathrm{C} 13$ ring of the oxindole moiety adopts a very shallow envelope conformation, with puckering parameters $q_{2}=0.071$ (3) \AA and $\varphi=-7.4^{\circ}$; the displacement asymmetry parameter $\Delta_{S}(\mathrm{C} 4)$ is -0.008 (2).

The molecular structure of (I) is influenced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds. Details of these are given in Table 2.

Experimental

A mixture of (E)-3-(p-bromophenacylidine) oxindole (1 mmol), acenaphthenequinone (1 mmol) and L -proline (1 mmol) was stirred at room temperature in aqueous methanol. The resulting crude product was purified by column chromatography to obtain the title compound. The compound was recrystallized using chloroformmethanol (1:1), yielding crystals of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{32} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=581.45 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.4878(8) \AA \\
& b=22.4857(18) \AA \\
& c=12.6805(10) \AA \\
& \beta=101.500(2) \AA \\
& V=2650.9(4) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\min }=0.731, T_{\max }=0.741$
15993 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0878 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.174$
$S=0.99$
5843 reflections
352 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

N1-C5	$1.462(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.559(4)$
$\mathrm{N} 1-\mathrm{C} 32$	$1.475(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.584(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.478(4)$	$\mathrm{C} 5-\mathrm{C} 34$	$1.522(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.545(4)$		
C5-N1-C32	$106.2(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$102.0(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$105.7(2)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 34$	$105.0(3)$
$\mathrm{C} 32-\mathrm{N} 1-\mathrm{C} 2$	$117.6(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$107.9(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.8(2)$	$\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34$	$106.4(3)$
$\mathrm{O} 36-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$	$-151.9(3)$	$\mathrm{O} 36-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$26.1(5)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 . O 35	0.98	2.52	3.003 (4)	110
C5-H5 . O 37	0.98	2.50	3.032 (4)	113
$\mathrm{C} 32-\mathrm{H} 32 \mathrm{~A} \cdots \mathrm{O} 35$	0.97	2.49	3.191 (4)	129
N7-H7 \cdots N $1^{\text {i }}$	0.86	2.13	2.980 (4)	168
C26-H26 . $\mathrm{O}^{\text {3 }}{ }^{\text {ii }}$	0.93	2.52	3.288 (5)	140

The H atoms attached to atom O38 were not located. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DV thanks the University Grants Commission (UGC), New Delhi, for financial support.

References

Abdul Ajees, A., Manikandan, S. \& Raghunathan, R. (2002). Acta Cryst. E58, o802-o804.
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. \& Watt, C. I.-F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

organic papers

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Edwards, J. M., Mangion, M., Anderson, J. B., Rapposch, M., Moews, P. \& Hite, G. (1980). Acta Cryst. B36, 1241-1244.

Hiremath, S., Ullagadi, A. \& Purohit, M. G. (1988). Indian J. Chem. Sect. B, 27, 1102-1105.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rajeswaran, W. G., Labroo, R. B. \& Cohen, L. A. (1999). J. Org. Chem. 64, 1369-1371.

Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Gowri Sridhar \& Raghunathan, R. (2003). Acta Cryst. E59, o1458-o1460.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Suzuki, T., Nagasu, T., Kawai, H., Fujiwara, K. \& Tsuji, T. (2003). Tetrahedron Lett. 44, 6095-6098.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

